(x^4+5x^2-36)(2x^2+9x-5)=0

Simple and best practice solution for (x^4+5x^2-36)(2x^2+9x-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^4+5x^2-36)(2x^2+9x-5)=0 equation:


Simplifying
(x4 + 5x2 + -36)(2x2 + 9x + -5) = 0

Reorder the terms:
(-36 + 5x2 + x4)(2x2 + 9x + -5) = 0

Reorder the terms:
(-36 + 5x2 + x4)(-5 + 9x + 2x2) = 0

Multiply (-36 + 5x2 + x4) * (-5 + 9x + 2x2)
(-36(-5 + 9x + 2x2) + 5x2 * (-5 + 9x + 2x2) + x4(-5 + 9x + 2x2)) = 0
((-5 * -36 + 9x * -36 + 2x2 * -36) + 5x2 * (-5 + 9x + 2x2) + x4(-5 + 9x + 2x2)) = 0
((180 + -324x + -72x2) + 5x2 * (-5 + 9x + 2x2) + x4(-5 + 9x + 2x2)) = 0
(180 + -324x + -72x2 + (-5 * 5x2 + 9x * 5x2 + 2x2 * 5x2) + x4(-5 + 9x + 2x2)) = 0
(180 + -324x + -72x2 + (-25x2 + 45x3 + 10x4) + x4(-5 + 9x + 2x2)) = 0
(180 + -324x + -72x2 + -25x2 + 45x3 + 10x4 + (-5 * x4 + 9x * x4 + 2x2 * x4)) = 0
(180 + -324x + -72x2 + -25x2 + 45x3 + 10x4 + (-5x4 + 9x5 + 2x6)) = 0

Combine like terms: -72x2 + -25x2 = -97x2
(180 + -324x + -97x2 + 45x3 + 10x4 + -5x4 + 9x5 + 2x6) = 0

Combine like terms: 10x4 + -5x4 = 5x4
(180 + -324x + -97x2 + 45x3 + 5x4 + 9x5 + 2x6) = 0

Solving
180 + -324x + -97x2 + 45x3 + 5x4 + 9x5 + 2x6 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 14y+21=7y+77 | | 30000=150x+80x | | y-24=2y-95 | | 3x+2+4=13 | | X+10000=128 | | 9t+55=26t-13 | | 2-9b=5(b+1) | | 4+5x=13+3x | | 21g-59=5g+53 | | x+0.05x+0.2x=63 | | 13j-34=6j+50 | | 3/8x/16 | | 5x+(2x+4)=18 | | -8n-32=-8(n+4) | | 700+35x=1120+25x | | (x^2-1)(x^2+2)(x+3)(x-4)(x+1)=0 | | 1+4x=7+x+1-4x | | 10+5x=6x+0 | | 3+7x=3x+27 | | 3(x-2)=2x+9 | | 8y-28=15y-49 | | 7+7x=-3x+77 | | X-8/5=// | | -4-3x=7x+86 | | -50=-10m | | -2x+6=3x+6 | | 500+22n=1204 | | 2+5x=6x-2 | | 3x-5=2x+50 | | y=1.8cosx | | 6+7x=x+18 | | y=9/5cosx |

Equations solver categories